

Fixed Point Theorem in Fuzzy Metric Space by using Compatibility of Type

M. S. Chauhan

Asst. Professor Govt. Mandideep Collge Raisen (M.P.)

Manoj Kumar Khanduja

Lecturer SOC. and E. IPS Academy Indore (M.P.) manojkhanduja3@gmail.com

Bharat Singh

Reader SOC. and E. IPS Academy Indore (M.P.) bharat_singhips@yahoo.com

Abstract – In this paper we give a fixed point theorem on fuzzy metric space with compatibility of type (\propto) Our result extends and generalize the result of Singh and Chauhan [8].

Keywords – Fuzzy Metric Space, Type (α) Mappings, Type (β) Mappings.

I. Introduction

Zadeh [11] introduced the concept of fuzzy sets in 1965 and in the next decade Kramosil and Michalek [12] introduced the concept of fuzzy metric spaces in 1975, which opened an avenue for further development of analysis in such spaces. Vasuki [13] investigated same fixed point theorem s in fuzzy metric spaces for R-weakly commuting mappings and pant [14] introduced the notion of reciprocal continuity of mappings in metric spaces. Balasubramaniam et al and S. Muralishankar, R.P. Pant [15] proved the poen problem of Rhodes [16] on existence of a contractive definition. Recently, Cho et al [2] initiated the concept of compatible maps of type (β) in fuzzy metric spaces by giving interesting relationship of these type of mapping with compatible and compatible of type (β) mappings.

II. PRELIMINARIES

Definition 2.1. A binary operation $8*:[0,1]\times[0,1]$ [0, 1] is called a t –norm if ([0, 1], *) is an abelian topological monoid with unit 1 such that a*b c*d whenever a c and b d for a, b, c, d [0, 1]. Examples of t-norms are a*b = ab and $a*b = min\{a,b\}$

Examples of t-norms are a *b = ab and a * b = min{a, b} Definition 2.2. ([9]) The 3-tuple (X,M, *) is called a fuzzy metric space, if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in $X2 \times [0,)$ satisfying the following conditions: for all x, y, z X and s, t > 0.

(F.M-1) M(x, y, 0) = 0,

(F.M-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(F.M-3) M(x, y, t) = M(y, x, t),

(F.M-4) M(x, y, t) *M(y, z, s) M(x, z, t + s),

(F.M-5) $M(x, y, \cdot) : [0, \cdot) \times [0, 1]$ is left continuous,

(F.M-6) M(x, y, t) = 1.

Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0.

Example 2.1. ([4]) Let (X, d) be a metric space. Define a * b =min{a, b} and M(x_i, y_i, t) = $\frac{t}{t+d(x,y)}$ for all x, y X

and all t > 0. Then $(X,M,\ ^*)$ is a fuzzy metric space. It is called the fuzzy metric space induced by the metric d.

Lemma 2.1. Let (X,M,*) be a fuzzy metric space .If there exist k (0,1) such that M(x,y,kt) M(x,y,t) for all $x,y \in X$ and t > 0 then x = y.

Definition 2.3. ([5]) Let (X,M, *) be a fuzzy metric space. A sequence $\{xn\}$ in X is said to converge to a point x = X if $\lim_n M(x_n, x, t) = 1$ for all t > 0. Further, the sequence $\{xn\}$ is said to be a Cauchy sequence if $\lim_n M(x_n, x_{n+p}, t) = 1$ for all t > 0 and p > 0. The space is said to be complete if every Cauchy sequence in X converges to a point in X.

III. COMPATIBLE MAPS

In this section, we give the concept of different types of compatible maps and some properties of them for our main result.

Definition 3.1. ([10]) Two maps A and S from a fuzzy metric space (X,M,*) into itself are said to be R weakly commuting if there exists a positive real number R such that for each x X M(ASx, SAx,Rt) M(Ax, Sx, t)

Definition 3.2. ([7]) Two maps A and B from a fuzzy metric space (X,M,*) into itself are said to be compatible if $\lim_n M(ABx_n,BAx_n,t) = 1$ for all t > 0, whenever $\{xn\}$ is a sequence such that $\lim_n Ax_n = \lim_n Bx_n = x$ for some $x \in X$.

Definition 3.3. ([1]) Two maps A and B from a fuzzy metric space (X,M, *) into itself are said to be compatible of type () If $\lim_n M(ABx_n,BBx_n,t) = 1$ $\lim_n M(BAx_n,AAx_n,t) = 1$ for all t > 0, whenever $\{xn\}$ is a sequence such that $\lim_n Ax_n = \lim_n Bx_n = x$ for some $x \in X$.

Definition 3.4. ([2]) Two maps A and B from a fuzzy metric space (X,M, *) into itself are said to be compatible of type (β) if $\lim_{n} M(AAx_n, BBx_n, t) = 1$ for all t > 0, whenever $\{xn\}$ is a sequence such that $\lim_{n} Ax_n = \lim_{n} Bx_n = x$ for some x X.

Definition 3.5. Two maps A and B from a fuzzy metric space (X,M,*) into itself are said to be weak -compatible if they commute at their coincidence points, i.e., Ax = Bx implies ABx = BAx.

Definition 3.6. A pair (A, S) of self-maps of a fuzzy metric space (X,M, *) is said to be semi-compatible if $\lim_n Ax_n = sx$ whenever $\{xn\}$ is a sequence such that $\lim_n Ax_n = \lim_n Bx_n = x * X$. It follows that (A, S) is semi-compatible and Ay = Sy then ASy = SAy.

Volume 2, Issue 1, ISSN: 2277 – 5668

Remark 3.1. Let (A, S) be a pair of self-maps of a fuzzy metric space (X,M, *). Then (A, S) is R-weakly commuting implies that (A, S) is compatible, which implies that (A, S) is weak-compatible. But the converse is not true.

Theorem 3.1. Let A, B, S, T, L and M be self maps on a complete Fuzzy metric space (X, M, t) with t = t for all t = [0,1], satisfying

- (a) $L(X)\subseteq ST(X)$, $M(X)\subseteq AB(X)$;
- (b) there exist a constant k (0,1) such that

$$M^{2}(Lx, My, kt) * [M(ABx, Lx, kt). M(STy, My, kt)] * \left[\frac{1 + M(Lx, My, t)}{2}\right]$$

 $\geq [pM(ABx, Lx, t) + qM(ABx, STy, t)]M(ABx, My, 2kt)$

for all x, y X and t > 0 where 0 < p, q < 1 such that p + q = 1;

- (c) AB=BA, ST=TS, LB=BL, MT=TM
- (d) either AB or L is continuous;
- (e) the pair(Ab,L) is compatible of type () and (M,ST) is weak compatible. Then A, B, S, T, L and M have a unique common fixed point.

Proof: Let x_0 be an arbitrary point of X. By (a) there exist $x_1, x_2 \in X$ such that $Lx_0 = STx_1 = y_0$

And $Mx_1 = ABx_1 = y_1$. Inductively ,we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that $Lx_{2n} = ST_{2n+1} =$ y_{2n} and $Mx_{2n+1} = ABx_{2n+2} = y_{2n+1}$ for n = 0, 1, 2

Step 1. By Taking $x = x_{2n}$ and $y = x_{2n+1}$ in (b) we have $M^2(Lx_{2n}, Mx_{2n+1}, kt)$

*
$$[M(ABx_{2n}, Lx_{2n}, kt). M(STx_{2n+1}, Mx_{2n+1}, kt)]$$

* $\left[\frac{1 + M(Lx_{2n}, Mx_{2n+1}, kt)}{2}\right]$

 $\geq [pM(ABx_{2n}, Lx_{2n}, t)]$

 $+ qM(ABx_{2n}, STx_{2n+1}, t)]M(ABx_{2n}, Mx_{2n+1}, 2kt)$

 $M^2(y_{2n}, y_{2n+1}, kt)$

*
$$[M(y_{2n-1}, y_{2n}, kt). M(y_{2n}, y_{2n+1}, kt)]$$

* $\left[\frac{1 + M(y_{2n}, y_{2n+1}, kt)}{2}\right]$

 $\geq [(p+q)M(y_{2n},y_{2n-1},t)]M(y_{2n-1},y_{2n+1},2kt)$

 $M(y_{2n}, y_{2n+1}, kt). [M(y_{2n-1}, y_{2n}, kt)]$

 $*M(y_{2n},y_{2n+1},kt)]$

 $\geq [(p+q)M(y_{2n},y_{2n-1},t)]M(y_{2n-1},y_{2n+1},2kt)$

 $M^2(y_{2n}, y_{2n+1}, kt). M(y_{2n-1}, y_{2n+1}, 2kt)$

$$\geq M(y_{2n-1}, y_{2n}, t)M(y_{2n-1}, y_{2n+1}, 2kt)$$

Hence, we have

$$M(y_{2n}, y_{2n+1}, kt) \qquad M(y_{2n-1}, y_{2n}, t)$$

Similarly we also have

$$M(y_{2n+1}, y_{2n+2}, kt) \qquad M(y_{2n}, y_{2n+1}, t)$$

In general for all n even or odd, we have

$$M(y_n, y_{n+1}, kt)$$
 $M(y_{n-1}, y_n, t)$

for k (0, 1) and all t > 0. Thus by Lemma (2.1), $\{y_n\}$ is a Cauchy sequence in X. Since (X, M, *) is complet ,it converges to a point z in X.

Also its subsequences converges as follows: $\{Lx_{2n}\}$

$$z_1 \{ABx_{2n}\}$$
 $z_1 \{Mx_{2n+1}\}$ $z_1 and \{STx_{2n+1}\} \to z_1$

Case I. AB is continuous. Since AB is continuous,

ABz and $L(AB)x_{2n}$ $AB(AB)x_{2n}$ $L(AB)x_{2n}$ SInce(AB, L) is compatible of type ABz

```
Copyright © 2013 IJEIR, All right reserved
```

$$Step \ 2. \ By taking \ x = ABx_{2n} \ and \ y = x_{2n+1} \ in \ (b)$$

$$M^{2}(LABx_{2n}, Mx_{2n+1}, kt)$$

$$* [M(ABABx_{2n}, LABx_{2n}, kt). M(STx_{2n+1}, Mx_{2n+1}, kt)]$$

$$* [\frac{1+M(LABx_{2n}, Mx_{2n+1}, kt)}{2}]$$

$$[pM(ABABx_{2n}, LABx_{2n}, t)$$

$$+ qM(ABABx_{2n}, STx_{2n+1}, t)]M(ABABx_{2n}, Mx_{2n+1}, 2kt)$$

$$M^{2}(ABz, z, kt) * [M(ABz, ABz, kt). M(z, z, kt)] * [\frac{1+M(ABz, z, kt)}{2}]$$

$$[pM(ABz, ABz, t) + qM(ABz, z, t)]M(ABz, z, 2kt)$$

$$M^{2}(ABz, z, kt) [pM(ABz, ABz, t)$$

$$+ qM(ABz, z, kt)]M(ABz, z, 2kt)$$

$$M^{2}(ABz, z, kt) [p+qM(ABz, z, t)]M(ABz, z, 2kt)$$

$$M(ABz, z, kt) \ge [p+qM(ABz, z, t)]$$

$$M(ABz, z, kt) \ge [p+qM(ABz, z, t)]$$

$$M(ABz, z, kt) \ge p+qM(ABz, z, kt)$$

$$M(ABz, z, kt) = M(z, z, kt)$$

$$M(ABz, z, kt) = M(z, z, kt)$$

$$M(z, z, kt) = M(z, z, kt)$$

 $M(Lz, z, kt) \ge pM(z, Lz, t) + q$ $M(Lz, z, kt) \ge pM(z, Lz, t) + q$ $M(Lz, z, kt) \ge pM(z, Lz, kt) + q$ $M(Lz, z, kt) \ge \frac{q}{1 - p} = 1$ for $k \in (0,1)$ and t > 0. Thus, we have z = Lz = ABz.

Step 4. By taking x = Bz, $y = x_{2n+1}$ in (b) we have $M^2(LBz, Mx_{2n+1}kt)$

 $\left[\frac{M(ABBz, LBz, kt)M(STx_{2n+1}, Mx_{2n+1}, kt)}{1 + M(LBz, Mx_{2n+1}, kt)}\right]$

 $+ qM(ABBz, STx_{2n+1,t})]M(ABBz, Mx_{2n+1,t})$ Since AB = BA and BL = LB, we have L(Bz) = B(Lz) =Bz and AB(Bz) = B(ABz) = Bz. Letting $n \to \infty$, we have $M^2(Bz, z, kt) * [M(Bz, Bz, kt)M(z, z, kt)] \ge$ [pM(Bz,Bz,t) + qM(Bz,z,t)]M(Bz,z,2kt)

 $M^{2}(Bz,z,kt) \geq [p + qM(Bz,z,t)]M(Bz,z,2kt)]$ $M^{2}(Bz,z,kt) \geq [p + qM(Bz,z,t)]M(Bz,z,kt)]$ $M(Bz, z, kt) \ge [p + qM(Bz, z, t)]$

$$M(Bz,z,kt) \qquad \frac{p}{1-q}=1$$

For $k \in (0,1)$ and all t > 0. Thus we have z = Bz. Since z = ABz, we have z = Az therefore, z = Az = Bz = Lz. Step 5. Since L(X) ST(X), there exist v X such that $z = Lz = STv_1$ by taking $x = x_{2n-1}y = v$ in (b), we have $M^{2}(Lx_{2n,},Mv,kt) = [M(ABx_{2n},Lx_{2n},kt)M(STv,Mv,kt)]$ $\left|\frac{1+M(Lx_{2n,},Mv,kt)}{2}\right|$

$$\left|\frac{1+M(Lx_{2n,i}Mv_{i}kt)}{2}\right|$$

 $[pM(ABx_{2n}Lx_{2n},t)]$ + $qM(ABx_{2n}STv_{i}t)]M(ABx_{2n}Mv_{i}2kt)$ Which implies that $n \to \infty$

 $M^{2}(z, Mv, kt) * [M(z, z, kt)M(z, Mv, kt)] * \left[\frac{1 + M(z, Mv, kt)}{2}\right]$

 $\geq [pM(z,z,t) + qM(z,z,t)] M(z,Mv,2kt)$ $M^2(z, Mv, kt) * [M(z, z, kt)M(z, Mv, kt)]$ $\geq [pM(z,z,t) + qM(z,z,t)] M(z,Mv,2kt)$ $M^{2}(z, Mv, kt) * [M(z, Mv, kt)] \ge [p+q] M(z, Mv, 2kt)$ $M^2(z, Mv, kt) \ge M(z, Mv, 2kt)$

 $M(z, Mv, kt) \ge M(z, Mv, 2kt)$ $M(z, Mv, kt) \ge M(z, Mv, t)$ $\geq M(z, Mv, t)$

Thus by lemma (2.1), we have z = Mv and so z = Mv. Since (M, ST) is weak compatible, we have STMv =MSTv. Thus STz = Mz.

Step 6. By taking $x = x_{2n}$, y = z in (b) and using step (5), we have

 $M^{2}(Lx_{2n},Mz,kt) = \left[M(ABx_{2n},Lx_{2n},kt)M(STz,Mz,kt)\right]$ $\left[1 + \frac{M(Lx_{2n},Mz,kt)}{2}\right]$

 $[pM(ABx_{2n}Lx_{2n}t)]$ $+ qM(ABx_{2n}, STz, t)]M(ABx_{2n}, Mz, 2kt)$

Which implies that as $n \to \infty$

$$M^{2}(z, Mz, kt) * [M(z, z, kt). (Mz, Mz, kt)] * \left[1 + \frac{M(z, Mz, kt)}{2}\right]$$

 $\geq [pM(z,z,t) + qM(z,Mz,t)]M(z,Mz,2kt)$ $M^2(z, Mz, kt) * [M(z, z, kt). M(Mz, Mz, kt)]$ $\geq [p + qM(z, Mz, t)]M(z, Mz, 2kt)$

 $M^2(z, Mz, kt) \ge [p + qM(z, Mz, t)]M(z, Mz, 2kt)$ $M^2(z, Mz, kt) \ge [p + qM(z, Mz, t)]M(z, Mz, kt)$

 $M(z, Mz, kt) \ge [p + qM(z, Mz, t)]M(z, Mz, kt)$ $\geq [p + qM(z, Mz, t)]$

 $M(z, Mz, kt) \ge p + qM(z, Mz, kt)$ $M(z, Mz, kt) \ge \frac{p}{1 - q} = 1.$

Thus we have z = Mz and therefore z = Az = Mz =Bz = Lz = STz.

Step 7. By taking $x = x_{2n}$, y = Tz in (b), we have $M^2(Lx_{2n}MTz,kt)$ $\left[M(ABx_{2n}, Lx_{2n}, kt)M(STTz, MTz, kt)\right]$ $\left[1 + \frac{M(Lx_{2n}, MTz, kt)}{2}\right]$ $pM(ABx_{2n}Lx_{2n}t)$ + $qM(ABx_{2n}STTz_{t})|M(ABx_{2n}MTz_{t})|$ Since MT = TM and TS = ST, we have MTz = TMz =Tz and ST(Tz) = T(STz) = Tz. Letting $n \rightarrow \text{ we have}$

$$M^{2}(z,Tz,kt) * [M(z,z,kt)M(Tz,Tz,kt)] * \left[1 + \frac{M(z,Tz,kt)}{2}\right]$$

$$\geq [pM(z,z,t) + qM(z,Tz,t)]M(z,Tz,2kt)$$

$$M^{2}(z,Tz,kt) \quad [M(z,z,kt)M(Tz,Tz,kt)] ;$$

$$\geq [pM(z,z,t) + qM(z,Tz,t)]M(z,Tz,2kt)$$

$$M^{2}(z,Tz,kt) \geq [p + qM(z,Tz,t)]M(z,Tz,kt)$$

$$M(z,Tz,kt) \geq [p + qM(z,Tz,t)]$$

$$[p + qM(z,Tz,kt)]$$

$$M(z,Tz,kt) \geq \frac{p}{1-q} = 1$$

Thus we have z = Tz. Since Tz = STz, we also have z = Sz. Therefore z = Az = Bz = Lz = Mz = Sz = Tz, that is z is he common fixed point of the six maps.

Case II. L is continuous.

Since L is continuous, LLx_{2n} Lz and $L(AB)x_{2n}$ Since (AB, L) is compatible of type , therefore $(AB)Lx_{2n}=Lz.$

Step 8. By taking $x = Lx_{2n}$, $y = x_{2n+1}$ in (b) we have $M^2(z, Lz, kt) * [M(Lz, Lz, kt)M(z, z, kt)] * \left[1 + \frac{M(z, Lz, kt)}{2}\right]$

$$[pM(Lz, Lz, t) + qM(z, Lz, t)]M(z, Lz, 2kt)$$

$$M^{2}(z, Lz, kt) * [M(Lz, Lz, kt)M(z, z, kt)]$$

$$\geq [pM(Lz, Lz, t) + qM(z, Lz, t)]M(z, Lz, 2kt)$$

$$M^{2}(z, Lz, kt) \geq [p + qM(z, Lz, t)]M(z, Lz, 2kt)$$

$$M(z, Lz, kt) \geq [p + qM(z, Lz, t)]$$

$$\geq [p + qM(z, Lz, kt)]$$

$$M(z, Lz, kt) \geq \frac{p}{1 - q} = 1$$

Thus we have z = Lz and using step 5-7, we have z = Lz =Mz = Sz = Tz.

Step 9. Since $M(X) \subseteq AB(X_i)$ there exist $v \in X$ such that z = Mz = ABv. By taking x = v, $y = x2_{n+1}$ in(b), we have

$$M^{2}(Lv, Mx_{2n+1}, kt) * [M(ABv, Lv, kt)M(STx_{2n+1}, Mx_{2n+1}, kt)] * [1 + \frac{M(Lv, Mx_{2n+1}, kt)}{2}]$$

[pM(ABv, Lv, t)]+ $qM(ABv, STx_{2n+1}t)]M(ABv, Mx_{2n+1}, 2kt)$

$$M^{2}(z,Lv,kt) * [M(z,Lv,kt)M(z,z,kt)] * \left[1 + \frac{M(Lv,z,kt)}{2}\right]$$

[pM(z,Lv,t)+qM(z,z,t)]M(z,z,2kt) $M^2(z,Lv,kt)$ [M(z,Lv,kt)M(z,z,kt)] $\geq [pM(z,Lv,t) + qM(z,z,t)]M(z,z,2kt)$ $M^{2}(z,Lv,kt) * [M(z,Lv,kt)] \geq [pM(z,Lv,t) + q]$ $\geq pM(z, Lv, t) + q$ $M(z, Lv, kt) \ge pM(z, Lv, kt) + q$ $M(z, Lv, kt) \quad \frac{q}{1-p} = 1$

Mz, that is z is the common fixed point of the six maps in

Thus we have z = Lv = ABv. Since(AB,L) compatible of type , we have Lz = ABz and using step 4 we also z = Bz. Therefore z = Az = Bz = Sz = Tz = Lz =

this case also.

Step 10. For uniqueness, let w(w z) be another common fixed point of A, B, S, T, L, M. Taking x = z, y = w in (b) we have,

$$M^2(Mw,Lz,kt)*\left[M(ABz,Lz,kt)M(STw,Mw,kt)\right]*\left[1+\frac{M(Mw,Lz,kt)}{2}\right]$$

$$\geq [pM(ABz, Lz, t) + qM(ABz, STw, t)]M(ABz, Mw, 2kt)$$

$$M^{2}(w,z,kt) * [M(ABz,Lz,kt)M(STw,Mw,kt)] * \left[1 + \frac{M(w,z,kt)}{2}\right]$$

$$\geq [pM(ABz,Lz,t) + qM(ABz,STw,t)]M(ABz,Mw,2kt)$$

 $M^2(w,z,kt)$ [M(ABz,Lz,kt)M(STw,Mw,kt)] [pM(ABz,Lz,t)+qM(ABz,STw,t)]M(ABz,Mw,2kt) Which implies that

$$M^{2}(w,z,kt) \geq [p + qM(z,w,t)]M(z,w,2kt)$$

$$\geq [p + qM(z,w,t)]M(z,w,kt)$$

$$M(w,z,kt) \quad [p + qM(z,w,t)]$$

$$M(w,z,kt) \quad p + qM(z,w,kt)$$

$$M(w,z,kt) \quad \frac{p}{1-q} = 1$$

Thus we have z = w. This completes the proof of the theorem.

Corollary 3.2. Let A, B, S, T, L and M be self maps on a complete Fuzzy metric space (X, M, t) with t = t for all t = [0,1], satisfying

- (a) L(X) S(X) ,M(X) A(X);
- (b) there exist a constant k (0,1) such that

$$M^{2}(Lx, My, kt) * [M(Ax, Lx, kt). M(Sy, My, kt)] * \left[\frac{1 + M(Lx, My, t)}{2}\right]$$

 $\geq [pM(Ax, Lx, t) + qM(Ax, Sy, t)]M(ABx, My, 2kt)$

for all x, y X and t>0 where 0 < p, q < 1 such that p+q=1;

- (c) either A or L is continuous;
- (d) the pair (L,A) is compatible of type $(\)$ and (M,S) is weak compatible then $A,\,S,\,L$ and M have a unique common fixed point.

REFERENCES

- [1] Y.J. Cho, Fixed point in fuzzy metric space, J. Fuzzy Math. 5 (1997), 949–962.
- [2] Y.J. Cho, H.K. Pathak, S.M. Kang and J.S. Jung, Fuzzy Sets and System 93 (1998), 99–111.
- [3] Y.J. Cho, B.K. Sharma and D.R. Sahu, Semi-compatibility and fixed points, Math Japonica 42 (1995), 91–98.
- [4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and System 64 (1994), 395–399.
- [5] M. Grebiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and System 27 (1988), 385–389.
- [6] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
- [7] S.N. Mishra, N. Mishra, S.L. Singh, Common fixed point of maps in fuzzy metric space, Int. J. Math. Math. Sci. 17 (1994), 253–258.
- [8] B. Singh and M.S. Chauhan, Common fixed point of compatible maps in fuzzy metric space, Fuzzy Sets and System 115 (2000), 471–475.
- [9] R. Vasuki, Common fixed point theorem in a fuzzy metric space, Fuzzy Sets and System 97 (1998), 395–397.
- [10] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric space, Indian J. Pure Appl. Math. 30 (1999), 419–423.
- [11] L.A. Zadeh, Fuzzy sets, Inform and Control 89 (1965), 338–353.

- [12] 12 .I. Kramosil and J.Michalek, Fuzzy metrics and Statistical metric spaces ,Kybernetika(Prague) 11(5) (1975) 336-344. MR0410633(53 14381)
- [13] R. Vasuki "Common fixed points for R-weakly commuting maps in fuzzy metric spaces", Indian J. Pure Appl. Bull. Math. 30 (1999), 419-423.
- [14] R. P. Pant "Common fixed points of four mappings," Bull. Cal. Math. Soc. 90 (1998).251-258.
- P. Balasubramaniam, S. Muralisankar ,R.P. Pant ,"Common fixed points of four mappings in a fuzzy metric spaces ".J. Fuzzy Math. 10(2) (2002),379-384.